In vitro simulation of cytoplasmic membrane senescence in cotyledons.

نویسندگان

  • B D McKersie
  • J E Thompson
چکیده

The loss of microsomal NADH-cytochrome c reductase activity (EC 1.6.99.3) in cotyledons, known to accompany germination of Phaseolus vulgaris and thought to reflect the progress of cytoplasmic membrane senescence, can be simulated in an in vitro system in which isolated microsomes from 2-day-old tissue are treated with cytosol fractions (microsomal supernatants). Inactivation of the enzyme is comparatively low when the microsomes are treated for 4 hours with cytosol fractions from 1- and 2-day-old tissue, but increases to about 68% upon treatment with a corresponding fraction from 3-day-old cotyledons. This temporal pattern is consistent with the pronounced in situ decline in NADH-cytochrome c reductase detectable between the 2nd and 4th days of germination. Extensive in vitro inactivation was also effected by cytosol fractions prepared from older tissue, including that harvested after 9 days of germination by which time the cotyledons were beginning to abscise.The degree of inactivation in the in vitro system proved to be proportional to the concentration of cytosol present in the incubation mixture, and also increased with time at fixed cytosol concentrations. Moreover, the rate of in vitro inactivation was some 18-fold greater than that occurring in situ. The data have been interpreted as indicating that cytoplasmic membrane senescence in cotyledons is, in part, mediated by one or more factors in the cytosol, extrinsic agents which are sequestered in situ and released gradually during germination as the pressures of senescence become more intense.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential changes in the steady state levels of thylakoid membrane proteins during senescence in Cucumis sativus cotyledons.

Chloroplast structure and function is known to alter during foliar senescence. Besides, the alterations in the structural organisation of thylakoid membranes changes in the steady state levels of thylakoid membrane proteins occur due to leaf ageing. We monitored temporal changes in some of the specific proteins of thylakoid membrane protein complexes by western blotting in the Cucumis sativus c...

متن کامل

Somatic Embryogenesis and Plant Regeneration from Embryonic Axes and Cotyledons Explants of Tea (Camellia sinenesis L.)

In the present study, 2, 4-dichlorophenoxyacetic acid (2, 4-D) was assessed individually for its effectiveness to induce somatic embryogenesis in tea (Camellia sinenesis L.). Embryonic axes and cotyledons explants were dissected from the seeds. Explants were cultured on Murashige and Skoog (MS) medium containing 0, 1 and 5 mM 2, 4-D alone for embryonic axes and 0, 1 and 5 mM 2, 4-D along with 0...

متن کامل

In Vitro Evaluation of Protective Effect of Rutin on Acrylamide-Induced Cellular Senescence in NIH3T3 Cells

Background: Aging is one of the important factors in the development of age-related diseases. Acrylamide can be produced during carbohydrate-rich foods prepared at high temperatures. Recently, studies showed that acrylamide can induce cellular senescence. On the other hand, Rutin as a natural flavonoid, has a potent antioxidant activity. Objective: This study aims to evaluate the ptotective ef...

متن کامل

SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis.

Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/th...

متن کامل

Effect of Ferula Assafoetida on Cytoplasmic Membrane Glucose Transporter Isotype-4 of C2C12 Cell Line

Background and Aims: Ferula Assafoetida is an antioxidant plant which has long been used in Iranian traditional medicine. Recently, it has been reported to have hypoglycemic and hyperinsulinemic effects, but the molecular mechanism of this effect have not been sufficiently described. This study was a step to evaluate the molecular mechanism of Ferula assafoetida action as an antihyperglycemic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 56 4  شماره 

صفحات  -

تاریخ انتشار 1975